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Outline

Expected electron beam parameters from beam
dynamics simulation
Tools to analyze one pass CeC process

— Modulation

— FEL amplification

— Kicker

Tools to predict evolution of ion beam under cooling
— Solving Fokker-Planck equation

— Macro-particle tracking

Summary



Our PoP is based on an economic version of CeC:
it limits strength of the wiggler a, to about 0.5
but it is very cost effective
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shows amplification of
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Simulations by Tech-X




Electron beam dynamics simulation
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For 2nC bunch charge, Astra simulation
shows the following electron beam
parameters at the exit of the linac:

rms transvesrse emittance: 5 mm.mrad,
rms bunch length: 4 mm

energy spread: ~103



Bunching factor reduction

e Density modulation of electrons due to
Debye shielding
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Improved Model for CeC Modulation:
Influences from long-range field
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 The improved model allows for investigating the influences of
long-range field on the CeC modulation process: ion

shielding;

* For CeC PoP, the reduction of modulation due to longitudinal

space charge field is small.



Simulations of modulator: uniform beam

* Simulation of the CeC modulator agree well with the analytical results.
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Modulator simulation with finite beam...

What has been done...

Modulator simulation with uniform/continous external focusing
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Solving Vlasov equation (with unperturbed trajectory approach):

n(x,y,z,t)
t=0.3
Nin()=-0.13
Ninax()=0.79

3D, normal
x0=(0,0,0)
vo=(0,1,0)
o=1

400 600
r(um)

800

)
1.50 z

o
B
—

1000

I~
S

>grated

(inte

cess electr

A

ns per um

T

wum

per

s electror

|
1 15

Il |
05 0 05

-1

e}

x  [um]
The simulation has been done by Tech-X. However, funds is limited and we presently do not have funds to support
this direction at Tech-X.
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The current solution is for a spherical domain, which needs to be extended to a cylindrical domain.
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Exp[10xRe(s,)]

FEL amplifier (1D theory)

In high gain limit, we can expand the
FEL dispersion relation to quadratic
order in frequency and obtain the
electric field due to electron density
wave-packet:
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FEL amplifier simulation I:

Without shot noise from electrons (quiet start):
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FEL amplifier simulation II:

With shot noise from electrons:
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3D Genesis simulation shows that the
maximal gain in bunching factor is 409,
which agrees with our estimation.



Kicker: 1D Model

* For 1D FEL output with the following initial transverse perturbation,
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Field Reduction due to Finite Transverse Modulation Size
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The results reproduces what previously derived by G. Stupakov © V. N. Litvinenko



Evolution of ion beam under cooling:
Solving Fokker-Planck equation
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e The current solution ignores
diffusion. A complete solution,
which take into account both
cooling and diffusion, is needed.

* An analytic solution is valuable

Brofie in understanding the physical

0.5 process, benchmarking codes

0.0 and providing informations to

diagnostics.
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Evolution of the ion beam under cooling Il:
Macro-particle tracking

Generate Macro-ion RF update Transverse motion IBS update CeC update

~,

Many subroutines follow the stochastic cooling code written by M. Blaskiewicz.

Current subroutine for CeC one turn kick:
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coherent cooling kick by R and the incoherent diffusive kick (due to CeC and IBS) by
RY/Z,

_ Number of turns in real machine

Number of turns in simulation



lon beam line density (a.u.)

Simulation of ion beam I:
lon beam profile evolution in 10 seconds (preliminary)
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Simulation of ion beam II:

lon beam profile after 40 minutes (preliminary)
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Summary

What has been worked on...

Analytical approach to model the three sections of CeC has been explored with uniform
spatial distribution. The results from the analytical studies have been used to benchmark
numerical simulation and to understand the relevant physics process.

1-D FEL theory is used to obtain the wave-packet after amplification. In high-gain limit,
the wave-packet can be approximated with a Gaussian envelop which is currently applied
in the cooling simulation (i.e. tracking ions under cooling).

Simulation of modulator and kicker section has bee done for uniform (infinite) beam
profile which agrees with the analytical solution. For finite beam, the simulation is still
work in progress.

We are using Genesis to simulate the FEL amplifier which shows that the gain of 100 can
be achieved without being saturated by the electron shot noise.

A tracking code is currently under development to simulate ion beam under CeC. The
preliminary results show expected local ‘peak’ as well as long-term cooling of the ion
beam.

What is on the to do list ...

Continue developing and improving the tracking code.

Developing analytic solution to predict evolution of ion beam under cooling.
Feasibility studies of adjusting the gain of FEL amplifier via phase shifter;
Proceeding on modeling CeC for a finite electron beam
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Goals of CeC APEX in run 12 con. 2

— lon bunch spectrum

v' The longitudinal size of the ‘bump’
due to local cooling is determined by
electron bunch size.

v Betacool simulation suggests that an
increase of the spectrum power in
the range from 200 MHz to 800 MHz
should be observed after 60 seconds
of effective cooling, if the noise level
allow.

v' Thus, it is essential to measure the
ion beam spectrum and noise level in
the relevant frequency range.

Beam spectrum
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Numerical solution of the Vlasov-Poisson system for the finite beam.

© A. Elizarov
* It's very important to be able to model the modulator for the realistic finite beam.

* We developed a numerical solver for the Vlasov-Poisson system for the finite beam with
confining fields. The solver was tested on the exactly solvable equations (non-physical).

 We obtained numerical results for the 1D, 2D and 3D balls with the normal velocity and
spatial distributions. Below we present the results for the 3D case:
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The finite plasma results have some distinctive gualitative features:

* Due to finiteness and conservation of the total charge, the perturbation is always
accompanied by the negative peak.

 The plasma waves are reflected for the plasma’s effective boundary.

* There are oscillations of the shape of the perturbations in the confining fields.
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Electron beam dynamics simulation |l
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